【精华】五年级数学说课稿范文10篇
作为一名人民教师,通常会被要求编写说课稿,说课稿有助于提高教师理论素养和驾驭教材的能力。说课稿要怎么写呢?下面是小编为大家收集的五年级数学说课稿10篇,欢迎大家借鉴与参考,希望对大家有所帮助。
五年级数学说课稿 篇1一、说设计理念
1、从学生已有的认知发展水平和知识经验出发,为学生提供充分从事数学活动的机会和充分的练习空间。
2、以学生发展为本,着力强化个人主体意识,同时关注学生学习动机、兴趣等情感态度。
3、致力于改变学生的学习方式,关注过程,让学生经历知识的形成过程,感受验证、转化,以及“用数学学数学”等数学思想方法。
二、说教材
1、教学内容:
《分数的基本性质》一课是苏教版五年级下册第六单元的一个内容。这部分内容的学习是在学生学习了分数的意义、分数与除法的关系、商不变规律等知识的基础上进行教学的,它是以后学习约分、通分的依据。因此,分数的基本性质是本单元的教学重点之一。要注意加强整数商不变规律的内在联系,这样既帮助学生理解了分数的基本性质,又沟通了新旧知识的内在联系。
2、教学目标:
(1)理解和掌握分数的基本性质,知道分数基本性质与整数除法中商不变规律的关系。
(2)能运用分数的基本性质把一个分数化成指定分母或分子而大小不变的分数。
(3)经历探索分数基本性质的过程,感受“变与不变”数学思想方法。培养学生观察、比较、抽象、概括及动手实践的能力,进一步发展学生的思维。
3、教学重点:
理解和掌握分数的基本性质。
4、教学难点:
学习自主探索,发现和归纳分数的基本性质,以及应用它解决相应的问题。
三、说教法
“将课堂还给学生,让课堂焕发生命活力”,为营造学生在教学活动中的独立、自主的学习空间,让学生成为课堂的主人,本着这样的指导思想,以及学生的认知规律,我采用的教学方法主要有:
1、实际操作法:指导学生亲自动手折一折,涂一涂,比一比,从这些实践活动中加深学生对分数基本性质的理解,促使学生的感性认识逐步理性化。
2、启发式教学法:运用知识迁移规律组织教学,用数学学数学,层层深入,促使学生在积极的思维中获取新知。
3、直观演示法:验证时,先让学生充分感知,发现规律,然后比较归纳,最后概括出分数的基本性质,从而使学生的思维从形象思维过渡到抽象思维。
四、说学法
学生在学习分数的基本性质时,引导学生采用猜想验证法、操作体验法,从学生已有的知识经验出发,复习商不变的规律及分数与除法之间的关系,学生自然就想到分数中是否也存在类似的规律,然后让学生提出,进行验证。
古人云:“授之以鱼,不如授之以渔。”教师只是学生的组织者、合作者和引导者,学生才是学习的小主人。新课程提倡:过程重于结果。在探索和操作中我采用了观察、归纳和引导发现法。
五、教学过程:
本节课我打算采用“创设情境,感知规律--研究素材,猜测规律--讨论交流,验证规律--巩固拓展,应用规律”的教学模式进行教学。
1.创设情境,感知规律。
首先创设了动手操作的情境:让学生折一折纸条。接着,让学生画一画,用彩笔在等分后的纸条上分别涂出它们的一半。告诉学生,如果把每张纸条都看作单位"1",问学生:你能把涂色的部分用分数表示吗?这一情境的设置,主要是让学生在动手操作过程中不仅复习了分数的意义,为下面导入新知识作好铺垫、迁移。并且在教学一开始,就能抓住学生爱动手以及直观思维的特点,激活课堂气氛,营造良好的学习开端。
2.研究素材,猜测规律。指导学生亲自动手折一折,涂一涂,比一比,从这些实践活动中加深学生对分数基本性质的理解,促使学生的感性认识逐步理性化。
3、讨论交流,验证规律
我在上面教学的基上,引导学生逐一讨论以下问题:
(1)1/2、2/4、3/6、4/8这些分数有什么关系?
(2)你能说出与"1/2"大小相等的其他分数吗?你还能说出与"2/3"大小相等的分数吗?
(3)从"1/2=2/4=3/6=4/8"中,你发现了什么?
(让学生分组讨论,充分发表自己的意见,经过归纳,最后得出:分数的分子和分母同时乘以或者除以相同的数,分数的大小不变。并把这句话显示出来。)
最后,让学生完整地概括出分数的基本性质。这样教有利于培养学生的问题意识,师生情感交融、和谐,学生积极参与,思维活跃,学习主动,为学生创设一个良好的学习氛围。
4.巩固拓展,应用规律。为了加深学生对分数基本性质的理解,激发学生的学习兴趣,我设计了一些练习让学生强化训练,巩固教学效果。
五年级数学说课稿 篇2教学目标
(一)进一步理解乘法的含义,乘法算式的各部分名称、读法和所表示的意义.
(二)对2~6的乘法口诀进行整理,找出规律,进一步熟记乘法口诀,比较熟练地掌握用乘法口诀求积的方法。
(三)培养学生的归纳整理的能力.
教学重点和难点
重点:乘法的含义,乘法口诀的整理与熟记.
难点:填写乘法口诀和乘法算式中的未知项.
教具和学具
教具:1~6的乘法口诀卡片,4,6,12的数字卡片.
学具:1~6的乘法口诀卡片.
教学过程设计
(一)复习乘法的含义、算式的读法、各部分名称及表示的意思
教师谈话:前一段我们学习了乘法初步认识和2~6的乘法口诀.今天我们一起上一节整理和复习课.(板书课题:整理和复习)
1.出示图32
(1)谁能看图口头编一道应用题.
(2)怎样列式?(教师板书:3×4=12(面))
(3)这个算式表示什么意思?说出算式的各部分名称.
2.口答下面各题
(1)3个4是多少?怎样列式.
(2)被乘数是6,乘数是4,积是多少?怎样列式:这个算式表示什么意思?
(二)乘法口诀的整理
1.整理
提问:谁能告诉大家我们一共学习了多少句乘法口诀?(同学们可能回答不上来,或者回答不一)
同学们手里都有一套已经学过的乘法口诀,数一数,有多少句?(21句)
我们做什么事都要有条有理,为了便于记住这些口诀,我们把这些口诀按一定的顺序,给它们排列一下,制作一个1~6的乘法口诀表.请同学们两人一组讨论一下这21句乘法口诀怎样排列好。
(学生先自己动手尝试排列,然后 ……此处隐藏14418个字……以本节课的教学重点是能够辨认从不同方向观察到的一个、两个物体的形状和相对位置。难点是培养学生的空间想象力和从三个不同方向进行观察的方法。
二、教具、学具准备和过
1.教具、学具的准备
要引起学生的注意,调动学生的学习主动性,教具和学具的准备必须充分。在这节课上,我准备了长方体、正方体、圆柱体和球体,学生也准备了相应的学具,供学生观察。为学生提供具体形象的教学手段,丰富教学情境,提高学生的学习兴趣,让学生积极而自主地获取新知,从而感受数学活动带来的快乐
2.教学过程
观察、想像、猜测、分析和推理等过程贯穿整堂课,让所有的学生都真正地、实实在在地进行观察和操作。而不是让教师的演示或少数学生的活动和回答来代替每一位学生的亲自动手、亲自体验和亲自思考。并鼓励学生敢于发表自己的意见,与同伴交流自己的想法,在交流中理清思路,互相启发。学生的空间想像力和思维能力得以锻炼,空间观念才能得到发展。
1.教学例1。
通过观察长方体物体的活动,使学生认识到从不同方向观察立体图形看到的形状是不同的,在任一位置,都不能同时看到所有的面;使学生能够辨认从正面、左面和上面观察到的简单物体的形状。
教学时,分以下两步进行。
(1)提供长方体实物,让学生站在不同的位置进行观察,说一说自己看到的是哪几个面。使学生真正体验到从不同方向观察同一物体,看到的形状是不同的;并且发现站在任一位置,都不能同时看到长方体所有的面,而最多只能看到它的三个面。
(2)指导学生分别从正面、左侧面和上面进行观察,使学生能辨认从不同方向看立体图形得到的平面图形。观察时,通过学生的示范,使观察姿势不正确的学生明白自己为何很难只看到一个面,强调视线要垂直于被观察物体的表面。使学生明确,这里所说的正面、左面和上面,都是相对于观察者而言的。让学生站在不同的位置说一说自己从这几个方向看到的分别是什么图形。
2.教学例2。
例1是从不同方向观察一个物体的,例2是观察两个简单立体图形组合。进一步学习从不同方向观察两个物体的位置关系和形状。先让学生分别观察球体和圆柱,说说看到了什么形状。再把两个物体放在一起,让学生想像一下,从不同角度看,分别是怎样的。最后根据学生的描述,出示形状进行验证。
三、教学研究重点
本学期的教学研究重点是空间与图形教学活动的有效性。本节课不仅设计了观察活动,而且设计了需要学生进行想像、猜测和推理进行探究的活动,培养学生的空间想像力和思维能力。例如,教学例2时,教师呈现球体和圆柱的组合形体,让学生学会辨认从不同方向观察两个物体的位置与关系时,学生根据头脑中已有的从不同方向观察这些立体图形所得到的形状的表象,结合这两个物体的位置关系不断在头脑中对这些表象进行组合和调整,最后再通过给出的形状进行验证,从而使学生的空间想像力和思维能力得到充分的锻炼。
五年级数学说课稿 篇10教材内容:
北师大版五年级数学上册第82-83页内容。
《点阵中的规律》属于尝试与猜测部分的内容,这部分内容是《新课程标准》中的数形结合思想在教材中的具体体现,看起来似乎对学生很陌生,与其他知识没有必然的联系,是一节相对独立的数学探究课,其实在前面的学习中学生已经接触过一些,如:一年级的找规律填数,二年级的按规律接着画,以及四年级探索图形的规律,都是逐步将数形结合在一起,将知识进行进一步提升。使学生通过观察、推理等活动,找出图形的变化规律,培养学生的观察、推理与归纳概括能力。
教学目标:
(1)结合具体的图形,认识“点阵”,了解点阵的基本知识。
(2)能在具体的观察活动中,发现点阵中隐藏的规律,体会图形与数的联系。
(3)培养学生观察、概括与推理的能力。
教学重点:
通过观察活动,引导学生发现和概括点阵中的规律。
教学难点:
寻求多种解决问题的方法,体会图形与数的联系。
教法学法:
教法安排:本节课我运用了活动教学形式,给予更多的空间让学生主动去探索新知,引导他们通过独立思考、相互交流,最后归纳出点阵中的规律。
学法安排:将自主学习与老师引导相结合,让学生通过自主探究,结合老师的引导,寻求规律,尝试发现数学的乐趣。
教学过程:
第一环节,创设情景,导入新课
首先,出示北京奥运会开幕式击缶方队录像,通过震撼、整齐的击缶方队去抓住学生的注意力;接着出示击缶方阵图,随即告诉学生:如果我们将每一个队员看做成一个点,就形成了点子图,这样一个点子图,早在20xx多年前古希腊数学家们就给它取名叫“点阵”,而且在这些点阵中还隐藏着许多的规律,这样一来不仅把方队(方阵)变成点阵,而且自然地引出了新课,还让学生感到点阵并不神秘,点阵就在我们生活中。
第二环节:探究新知,总结规律。
出示一组点阵图,让同学们自己先观察这个点阵图,根据图形特征来思考第五幅图该怎么画(学生动手操作)。学生通过动手操作并从中探索规律,然后汇报,由我引导出最终的结果:第几个点阵就是几×几,如果用n来代替点阵图的序数,那么可以将规律表示为n×n。
刚才用的是从点阵图的外形特征出发,发现并找到解决外形点阵中点的特点的方法,如果现在我们换个角度,还能不能找出点阵的规律呢?引导学生“斜着看”。引导学生用数学表达式来表示点阵中所有点的数目,并依此写出后几个点阵图点数的数学表达式,总结规律:第几个点阵就从1连续加到几,再反过来加回到1。
做到这还不够,继续引导学生再换个角度,看有没有新发现?随即引导学生“拐弯看”,让学生根据折线划分后的点阵图自己探究规律并用数学表达式总结规律。即:第几个点阵图就是从1开始加连续的几个奇数。第n个就是要从1加到2n-1(在这可能学生对2n-1很难概括出来,须适时引导)
第三环节:应用方法,解决问题
试一试(第一题):在本道题的规律发现中,要让学生自己感觉图形的特点,并结合1×2的含义完成练习,完成练习后让学生再思考为什么你写出这样的算式。再让学生思考这组点阵图的规律,规律总结为:第n个点阵图中的点阵数目是n×(n+1)。
试一试(第二题),本道题直接让学生独立完成,完成后评讲,为什么可以得到15的结果,学生汇报后,总结一下,第n个点阵图的点阵数目是1+2+3+…+n。
第四环节:课堂回顾,总结收获
让同学们回顾本节课内容:1、点阵中的规律可以从点阵的形状入手;2、从不同的观察点,用不同的划分的方法也可以发现点阵的规律;3、点阵的规律用算式来表达更加的方便。
最后,为了使学生体验到数学知识与生活的密切联系,设计了拓展应用,运用课件为学生展示了点阵在生活中的实际应用。并以古希腊数学家的一句名言来结束本堂课。
各位领导、各位老师,以上是我对本课的教学设计;恳请各位老师批评指导。我的说课完毕,谢谢大家!
文档为doc格式